Free Frobenius Algebra on the Differential Forms of a Manifold

نویسنده

  • SCOTT O. WILSON
چکیده

We construct an action of a free resolution of the Frobenius properad on the differential forms of a closed oriented manifold. As a consequence, the forms of a manifold with values in a semi-simple Lie algebra have an additional structure given by an action of a free resolution of the properad describing Lie di-algebras with module compatibility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a General Chain Model of the Free Loop Space and String Topology

LetM be a smooth oriented manifold. The homology ofM has the structure of a Frobenius algebra. This paper shows that on chain level there is a Frobenius-like algebra structure, whose homology gives the Frobenius algebra of M . Moreover, associated to any Frobeniuslike algebra, there is a chain complex whose homology has the structure of a Gerstenhaber algebra and a Batalin-Vilkovisky algebra. A...

متن کامل

On algebraic structures of the Hochschild complex

We first review various known algebraic structures on the Hochschild (co)homology of a differential graded algebras under weak Poincaré duality hypothesis, such as CalabiYau algebras, derived Poincaré duality algebras and closed Frobenius algebras. This includes a BV-algebra structure on HH(A,A) or HH(A,A), which in the latter case is an extension of the natural Gerstenhaber structure on HH(A,A...

متن کامل

Hodge Theory and A∞ Structures on Cohomology

We use Hodge theory and a construction of Merkulov to construct A∞ structures on de Rham cohomology and Dolbeault cohomology. Hodge theory is a powerful tool in differential geometry. Classically, it can be used to identify the de Rham cohomology of a closed oriented Riemannian manifold with the space of harmonic forms on it as vector spaces. The wedge product on differential forms provides an ...

متن کامل

Extention Cohomological Fields Theory and Noncommutative Frobenius Manifolds

INTRODUCTION The Cohomological Field Theory was propose by Kontsevich and Manin [5] for description of Gromov-Witten Classes. They prove that Cohomological Field Theory is equivalent to Formal Frobenius manifold. Formal Frobenius manifold is defined by a formal series F , satisfying to associative equations. In points of convergence the series F defines a Frobenius algebras. The set of these po...

متن کامل

Frobenius Manifold Structures on the Spaces of Abelian Integrals

Frobenius manifold structures on the spaces of abelian integrals were constructed by I. Krichever. We use D-modules, deformation theory, and homological algebra to give a coordinate-free description of these structures. It turns out that the tangent sheaf multiplication has a cohomological origin, while the Levi–Civita connection is related to 1-dimensional isomonodromic deformations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007